36 research outputs found

    Probability and Common-Sense: Tandem Towards Robust Robotic Object Recognition in Ambient Assisted Living

    Get PDF
    The suitable operation of mobile robots when providing Ambient Assisted Living (AAL) services calls for robust object recognition capabilities. Probabilistic Graphical Models (PGMs) have become the de-facto choice in recognition systems aiming to e ciently exploit contextual relations among objects, also dealing with the uncertainty inherent to the robot workspace. However, these models can perform in an inco herent way when operating in a long-term fashion out of the laboratory, e.g. while recognizing objects in peculiar con gurations or belonging to new types. In this work we propose a recognition system that resorts to PGMs and common-sense knowledge, represented in the form of an ontology, to detect those inconsistencies and learn from them. The utilization of the ontology carries additional advantages, e.g. the possibility to verbalize the robot's knowledge. A primary demonstration of the system capabilities has been carried out with very promising results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    OLT: A Toolkit for Object Labeling Applied to Robotic RGB-D Datasets

    Get PDF
    In this work we present the Object Labeling Toolkit (OLT), a set of software components publicly available for helping in the management and labeling of sequential RGB-D observations collected by a mobile robot. Such a robot can be equipped with an arbitrary number of RGB-D devices, possibly integrating other sensors (e.g. odometry, 2D laser scanners, etc.). OLT first merges the robot observations to generate a 3D reconstruction of the scene from which object segmentation and labeling is conveniently accomplished. The annotated labels are automatically propagated by the toolkit to each RGB-D observation in the collected sequence, providing a dense labeling of both intensity and depth images. The resulting objects’ labels can be exploited for many robotic oriented applications, including high-level decision making, semantic mapping, or contextual object recognition. Software components within OLT are highly customizable and expandable, facilitating the integration of already-developed algorithms. To illustrate the toolkit suitability, we describe its application to robotic RGB-D sequences taken in a home environment.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish grant pro- gram FPU-MICINN 2010 and the Spanish projects TAROTH: New developments toward a Robot at Home (DPI2011-25483) and PROMOVE: Advances in mobile robotics for promoting independent life of elders (DPI2014-55826-R

    Experiences on a motivational learning approach for robotics in undergraduate courses

    Get PDF
    This paper presents an educational experience carried out in robotics undergraduate courses from two different degrees: Computer Science and Industrial Engineering, having students with diverse capabilities and motivations. The experience compares two learning strategies for the practical lessons of such courses: one relies on code snippets in Matlab to cope with typical robotic problems like robot motion, localization, and mapping, while the second strategy opts for using the ROS framework for the development of algorithms facing a competitive challenge, e.g. exploration algorithms. The obtained students’ opinions were instructive, reporting, for example, that although they consider harder to master ROS when compared to Matlab, it might be more useful in their (robotic related) professional careers, which enhanced their disposition to study it. They also considered that the challenge-exercises, in addition to motivate them, helped to develop their skills as engineers to a greater extent than the skeleton-code based ones. These and other conclusions will be useful in posterior courses to boost the interest and motivation of the students.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    UPGMpp: a Software Library for Contextual Object Recognition

    Get PDF
    Object recognition is a cornerstone task towards the scene understanding problem. Recent works in the field boost their perfor- mance by incorporating contextual information to the traditional use of the objects’ geometry and/or appearance. These contextual cues are usually modeled through Conditional Random Fields (CRFs), a partic- ular type of undirected Probabilistic Graphical Model (PGM), and are exploited by means of probabilistic inference methods. In this work we present the Undirected Probabilistic Graphical Models in C++ library (UPGMpp), an open source solution for representing, training, and per- forming inference over undirected PGMs in general, and CRFs in par- ticular. The UPGMpp library supposes a reliable and comprehensive workbench for recognition systems exploiting contextual information, in- cluding a variety of inference methods based on local search, graph cuts, and message passing approaches. This paper illustrates the virtues of the library, i.e. it is efficient, comprehensive, versatile, and easy to use, by presenting a use-case applied to the object recognition problem in home scenes from the challenging NYU2 dataset.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish grant program FPU-MICINN 2010 and the Spanish projects “TAROTH: New developments toward a robot at home” (Ref. DPI2011-25483) and “PROMOVE: Advances in mobile robotics for promoting independent life of elders” (Ref. DPI2014-55826-R

    An evaluation of plume tracking as a strategy for gas source localization in turbulent wind flows

    Get PDF
    Gas source localization is likely the most direct application of a mobile robot endowed with gas sensing capabilities. Multiple algorithms have been proposed to locate the gas source within a known environment, ranging from bio-inspired to probabilistic ones. However, their application to real-world conditions still remains a major issue due to the great difficulties those scenarios bring, among others, the common presence of obstacles which hamper the movement of the robot and notably ncrease the complexity of the gas dispersion. In this work, we consider a plume tracking algorithm based on the well-known silkworm moth strategy and analyze its performance when facing different realistic environments characterized by the presence of obstacles and turbulent wind flows. We rely on computational fluid dynamics and the open source gas dispersion simulator GADEN to generate realistic gas distributions in scenarios where the presence of obstacles breaks down the ideal downwind plume. We first propose some modifications to the original silkworm moth algorithm in order to deal with the presence of obstacles in the environment (avoiding collisions) and then analyze its performance within four challenging environments.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Proyecto de excelencia de la Junata de Andalucia TEP2012-53

    Online Context-based Object Recognition for Mobile Robots

    Get PDF
    This work proposes a robotic object recognition system that takes advantage of the contextual information latent in human-like environments in an online fashion. To fully leverage context, it is needed perceptual information from (at least) a portion of the scene containing the objects of interest, which could not be entirely covered by just an one-shot sensor observation. Information from a larger portion of the scenario could still be considered by progressively registering observations, but this approach experiences difficulties under some circumstances, e.g. limited and heavily demanded computational resources, dynamic environments, etc. Instead of this, the proposed recognition system relies on an anchoring process for the fast registration and propagation of objects’ features and locations beyond the current sensor frustum. In this way, the system builds a graphbased world model containing the objects in the scenario (both in the current and previously perceived shots), which is exploited by a Probabilistic Graphical Model (PGM) in order to leverage contextual information during recognition. We also propose a novel way to include the outcome of local object recognition methods in the PGM, which results in a decrease in the usually high CRF learning complexity. A demonstration of our proposal has been conducted employing a dataset captured by a mobile robot from restaurant-like settings, showing promising results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Modelado del contexto geométrico para el reconocimiento de objetos

    Get PDF
    El reconocimiento de objetos es una tarea clave para dotar de cierta autonomía a un robot móvil.Los métodos de reconocimiento tradicionales han alcanzado un éxito aceptable empleando información sobre la apariencia y/o la geométrica de los objetos, aunque pueden presentar resultados ambiguos. Persiguiendo mitigar esta desventaja, en este trabajo se estudia cómo modelar información sobre el contexto geométrico de los objetos, la cual resulta útil para inclinar la balanza en reconocimientos ambiguos, de tal manera que se alcance un reconocimiento tan exitoso como sea posible. Para ello hemos recurrido a los Campos Aleatorios Condicionales como herramienta de modelado, y a Robot@Home como conjunto de datos para la evaluación. Con estas premisas se han alcanzado conclusiones interesantes para cualquier sistema reconocedor empleando información contextual.Este trabajo se ha desarrollado en el marco de los proyectos TEP2012-530 y DPI2014-55826-R, fi nanciados por la Junta de Andalucía y el Ministerio de Ciencia e Innovación respectivamente, ambos contando con fondos del Fondo Europeo de Desarrollo Regional (FEDER). Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Improvement of the sensory and autonomous capability of robots through olfaction: the IRO Project

    Get PDF
    Proyecto de Excelencia Junta de Andalucía TEP2012-530Olfaction is a valuable source of information about the environment that has not been su ciently exploited in mobile robotics yet. Certainly, odor information can contribute to other sensing modalities, e.g. vision, to successfully accomplish high-level robot activities, such as task planning or execution in human environments. This paper describes the developments carried out in the scope of the IRO project, which aims at making progress in this direction by investigating mechanisms that exploit odor information (usually coming in the form of the type of volatile and its concentration) in problems like object recognition and scene-activity understanding. A distinctive aspect of this research is the special attention paid to the role of semantics within the robot perception and decisionmaking processes. The results of the IRO project have improved the robot capabilities in terms of efciency, autonomy and usefulness.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Detección de Lugares con Camaras RGB-D. Aplicación a Cierre de Bucles en SLAM

    Get PDF
    En este trabajo se propone un método que combina descriptores de imágenes de intensidad y de profundidad para detectar de manera robusta el problema de cierre de bucle en SLAM. La robustez del método, proporcionada por el empleo conjunto de información de diversa naturaleza, permite detectar lugares revisitados en situaciones donde m´etodos basados solo en intensidad o en profundidad presentan dificultades (p.e. condiciones de iluminación deficientes, o falta de geometría). Además, se ha diseñado el métod cuenta su eficiencia, recurriendo para ello al detector FAST para extraer las características de las observaciones y al descriptor binario BRIEF. La detección de bucle se completa con una Bolsa de Palabras binarias. El rendimiento del método propuesto se ha evaluado en condiciones reales, obteniéndose resultados muy satisfactorios.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore